

IMPLEMENTATION: Solve the equation:

$$2(12 + x) = 34 + x$$

$$24 + 2x = 34 + x$$

$$24 + 2x - x = 34 + x - x$$

$$24 + x = 34$$

$$24 - 24 + x = 34 - 24$$

$$x = 10$$

Hence, in 10 years the father will be twice as old as his son.

EVALUATION: In 10 years, the father will be 34 + 10 = 44 years old, and the son will be 12 + 10 = 22 years, in which case the father is twice as old as his son.

Try These

- 1. A man is six times as old as his son. In 9 years he will be three times as old as his son. How old are they now?
- 2. A woman is twice as old as her daughter. Twenty years ago, she was four times as old as her daughter. How old are they now?
- 3. Mark is 4 years older than his brother Mike. If the sum of their ages is 20, how old are they now?
- 4. Marie is 12 years older than Mary. Nine years ago, Marie was twice as old as Mary. Find their present ages.
- 5. Sam is 18 and Bill is 24. How many years ago was Bill three times as old as Sam?
- 6. Pat is five years older than her brother. Two years from now, the sum of their ages will be 23. Find their present ages.
- 7. The sum of Tyler and Alane's ages is 36. Twelve years ago, Alane was twice as old as Tyler. Find their present ages.
- 8. Tara is two years older than Ashley. In 4 years from now, Tara will be twice as old as Ashley was 4 years ago. Find their present ages.
- 9. A father is three times as old as his twin sons. If the sum of their ages in two years will be 81, how old are they now?

10. Will is 4 years older than Phil. Three years from now, Will will be twice as old as Phil was last year. Find their present ages.

SOLUTIONS:

1. Let x = the son's age and 6x = the father's age; then x + 9 = the son's age and 6x + 9 = the father's age in 9 years.

$$3(x+9) = 6x + 9$$

$$3x + 27 = 6x + 9$$

$$3x - 6x + 27 = 6x - 6x + 9$$

$$-3x + 27 = 9$$

$$-3x + 27 - 27 = 9 - 27$$

$$-3x = -18$$

$$\frac{-3^{1}x}{-3^{1}} = \frac{-18}{-3}$$

$$x = 6 \quad \text{(son's age)}$$

$$6x = 6 \cdot 6 = 36 \quad \text{(father's age)}$$

2. Let x = daughter's age and 2x = mother's age; then x - 20 = the daughter's age and 2x - 20 = the mother's age 20 years ago.

$$4(x - 20) = 2x - 20$$

$$4x - 80 = 2x - 20$$

$$4x - 2x - 80 = 2x - 2x - 20$$

$$2x - 80 = -20$$

$$2x - 80 + 80 = -20 + 80$$

$$2x = 60$$

$$\frac{2^{1}x}{2^{4}} = \frac{60}{2}$$

$$x = 30 \quad \text{(daughter's age)}$$

$$2x = 2 \cdot 30 = 60 \quad \text{(mother's age)}$$

3. Let x = Mike's age and x + 4 = Mark's age.

$$x + x + 4 = 20$$

$$2x + 4 = 20$$

$$2x + 4 - 4 = 20 - 4$$

$$2x = 16$$

$$\frac{2^{1}x}{2^{1}} = \frac{16}{2}$$

$$x = 8 \quad \text{(Mike's age)}$$

$$x + 4 = 8 + 4 = 12 \quad \text{(Mark's age)}$$

4. Let x = Mary's age and x + 12 = Marie's age; then x - 9 = Mary's age and x + 12 - 9 = Marie's age 9 years ago.

$$2(x-9) = x + 12 - 9$$

$$2x - 18 = x + 3$$

$$2x - x - 18 = x - x + 3$$

$$x - 18 = 3$$

$$x - 18 + 18 = 3 + 18$$

$$x = 21 \quad \text{(Mary's age)}$$

$$x + 12 = 21 + 12 = 33 \quad \text{(Marie's age)}$$

5. Let x = number of years ago when Bill was three times as old as Sam; then 18 - x = Sam's age and 24 - x = Bill's age x years ago.

$$3(18 - x) = 24 - x$$

$$54 - 3x = 24 - x$$

$$54 - 3x + x = 24 - x + x$$

$$54 - 2x = 24$$

$$54 - 54 - 2x = 24 - 54$$

$$-2x = -30$$

$$\frac{-2^{4}x}{-2^{4}} = \frac{-30}{-2}$$

$$x = 15 \text{ years ago}$$

6. Let x = Pat's brother's age and x + 5 = Pat's age; then x + 2 = Pat's brother's age and x = 5 + 2 = Pat's age in two years.

$$x + 2 + x + 5 + 2 = 23$$

$$2x + 9 = 23$$

$$2x + 9 - 9 = 23 - 9$$

$$2x = 14$$

$$\frac{2x}{2} = \frac{14}{2}$$

$$x = 7 \quad \text{(Pat's brother's age)}$$

$$x + 5 = 7 + 5 = 12 \quad \text{(Pat's age)}$$

7. Let x = Tyler's age and 36 - x = Alane's age; then x - 12 = Tyler's age and 36 - x - 12 = Alane's age 12 years ago.

$$2(x-12) = 36 - x - 12$$
$$2x - 24 = 24 - x$$
$$2x + x - 24 = 24 - x + x$$
$$3x - 24 = 24$$
$$3x - 24 + 24 = 24 + 24$$

$$3x = 48$$

$$\frac{3^{1}x}{3^{1}} = \frac{48}{3}$$

$$x = 16$$
 (Tyler's age)

$$36 - x = 36 - 16 = 20$$
 (Alane's age)

8. Let x = Ashley's age and x + 2 = Tara's age; then x - 4 = Ashley's age 4 years ago and x + 2 + 4 = Tara's age in 4 years.

$$2(x-4) = x+2+4$$

$$2x - 8 = x + 6$$

$$2x - x - 8 = x - x + 6$$

$$x - 8 = 6$$

$$x - 8 + 8 = 6 + 8$$

$$x = 14$$
 (Ashley's age)

$$x + 2 = 14 + 2 = 16$$
 (Tara's age)

9. Let x = age of the sons and 3x = age of the father; then x + 2 = the sons' ages and 3x + 2 = the father's age in 2 years.

$$x + 2 + x + 2 + 3x + 2 = 81$$

$$5x + 6 = 81$$

$$5x + 6 - 6 = 81 - 6$$

$$5x = 75$$

$$\frac{8^{1}x}{8^{1}} = \frac{75}{5}$$

x = 15 (each son's age)

$$3x = 3 \cdot 15 = 45$$
 (father's age)

10. Let x = Phil's age and x + 4 = Will's age; then x - 1 = Phil's age one year ago and x + 4 + 3 = Will's age in 3 years.

$$x + 4 + 3 = 2(x - 1)$$

 $x + 7 = 2x - 2$
 $x - x + 7 = 2x - x - 2$
 $7 = x - 2$
 $7 + 2 = x - 2 + 2$
 $9 = x$ (Phil's age)
 $x + 4 = 9 + 4 = 13$ (Will's age)